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Abstract We propose a novel method to apply Teichmüller
space theory to study the signature of a family of noninter-
secting closed 3D curves on a general genus zero closed sur-
face. Our algorithm provides an efficient method to encode
both global surface and local contour shape information.
The signature—Teichmüller shape descriptor—is computed
by surface Ricci flow method, which is equivalent to solv-
ing an elliptic partial differential equation on surfaces and
is numerically stable. We propose to apply the new signa-
ture to analyze abnormalities in brain cortical morphometry.
Experimental results with 3D MRI data from Alzheimer’s
disease neuroimaging initiative (ADNI) dataset [152 healthy
control subjects versus 169 Alzheimer’s disease (AD) patients]
demonstrate the effectiveness of our method and illustrate
its potential as a novel surface-based cortical morphometry
measurement in AD research.
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1 Introduction

Some neurodegenerative diseases, such as Alzheimer’s dis-
ease (AD), are characterized by progressive cognitive dys-
function. The underlying disease pathology most probably
precedes the onset of cognitive symptoms by many years.
Efforts are underway to find early diagnostic biomarkers to
evaluate neurodegenerative risk presymptomatically in a suf-
ficiently rapid and rigorous way. Among a number of dif-
ferent brain imaging, biological fluid, and other biomarker
measurements for use in the early detection and tracking of
AD, structural magnetic resonance imaging (MRI) measure-
ments of brain shrinkage are among the best established bio-
markers of AD progression and pathology.

In structural MRI studies, early researches (Thompson
and Toga 1996; Fischl et al. 1999) have demonstrated that
surface-based brain mapping may offer advantages over
volume-based brain mapping work (Ashburner et al. 1998)
to study structural features of the brain, such as cortical
gray matter thickness, complexity, and patterns of brain
change over time due to disease or developmental processes.
In research studies that analyze brain morphology, many
surface-based shape analysis methods have been proposed,
such as spherical harmonic analysis (Gerig et al. 2001; Chung
et al. 2008), minimum description length approaches Davies
et al. 2003, medial representations (M-reps) (Pizer et al.
1999), cortical gyrification index (Tosun et al. 2006), shape
space (Liu et al. 2010), metamorphosis (Trouve and Younes
2005), momentum maps (Qiu and Miller 2008), conformal
invariants (Wang et al. 2009), and so on; these methods
may be applied to analyze shape changes or abnormalities
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in cortical and subcortical brain structures. Among these
approaches, most of them relied on local geometric fea-
tures, e.g., thickness or distance. In contrast, our method
focuses on both local geometries of functional regions and
geometric relations among them. When the regions with the
same local geometries are glued together with a different pat-
tern, introducing some twisting or tensions, our signatures
will be changed significantly. Our Teichmüller shape space
approach provides measurements on the intrinsic confor-
mal structure by computing global intrinsic angle-invariant
shape descriptors. This local–global view based on confor-
mal geometry would be highly advantageous for AD bio-
marker research.

In order to compute the Teichmüller shape descriptor,
conformal welding signature, we need to map each functional
area onto the planar domain first. This can be accomplished
by using the Ricci flow method. Ricci flow is a powerful
tool to compute the conformal structures for any arbitrary
surfaces. It has been successfully used to prove the Poincaré
conjecture. Ricci flow deforms a Riemannian metric con-
formally according to curvature proportionally like a heat
diffusion process such that the curvatures evolve and eventu-
ally become constant everywhere. The discrete surface Ricci
flow has been presented in (Jin et al. 2008; Zeng et al. 2010;
Wang et al. 2012).

1.1 AD-Related Motivation

MRI-based measures of atrophy are regarded as valid mark-
ers of AD state and progression. Atrophy of brain struc-
tures is associated with cognitive impairment in normal aging
and AD (Frisoni et al. 2010; Fox et al. 1999), and typically
results from a combination of neuronal atrophy, cell loss,
and impairments in myelin turnover and maintenance, and
corresponding reductions in white matter volume. These cel-
lular processes combine at the macroscopic level to induce
observable differences on brain MRI. Several of processes
(such as cellular atrophy) occur with normal aging, and oth-
ers (including neuronal loss) are further promoted by amyloid
plaque and neurofibrillary tangle deposition. Although sur-
face expansion and contraction are less traditional measures
of morphometry, it is likely that they simply reflect the same
processes that cause progressive brain tissue loss.

Our work, as well as some approaches developed by
other groups [e.g., Jack et al. (2004); Cuingnet et al. (2011);
Chincarini et al. (2011); Wang et al. (2011)], measures the
extent and severity of cortex volume, grey matter thick-
ness, hippocampal and ventricular shape deformations as a
proxy for grey matter loss, hippocampal atrophy and ven-
tricular enlargement. The detected compression (or expan-
sion for lateral ventricle) of the surface areas is associ-
ated with macrostructural and microstructural loss in dif-
ferent brain regions and makes them useful indices of the

neurodegenerative process. Besides grey matter thickness, it
would be beneficial to have a stable surface area related sta-
tistics. The Teichmüller shape signature we proposed here
is such a feature set which quotients out scaling, transla-
tion, rotation, general isometric deformation, and conformal
deformation, and enables a more exact comparison of brain
cortex changes. In addition, our signature depicts the corre-
lations between AD-related functional areas (see Shi et al.
2011) and the whole brain cortical surface, and has the pow-
erful ability to recover the shape of the whole brain surface.
All of these motivate us to apply the new signature to AD
detection and we believe it will pave a novel way for shape
analysis in AD study.

This work was inspired by Sharon and Mumford’s work
Sharon and Mumford (2006) and generalized the idea from
2D shape space to 3D shape space. We propose a novel and
intrinsic method to compute the global correlations between
various surface region contours in Teichmüller space and
apply it to study brain morphology in AD. The proposed
shape signature demonstrates the global geometric features
encoded in the regions of interest (ROI), which are regarded
as a biomarker for measurements of AD progression and
pathology. It is based on the brain surface conformal struc-
ture (Hurdal and Stephenson 2004; Angenent et al. 2000; Gu
et al. 2004; Wang et al. 2007) and can be accurately com-
puted using the discrete surface Ricci flow method (Jin et al.
2008; Zeng et al. 2010; Wang et al. 2006). Theoretically, the
signature is guaranteed to be a complete and global shape
descriptor based on Teichmüller space theory and conformal
welding theory.

1.2 Related Work

In this work, we perform AD detection by studying the mor-
phometry of brain cortical surface. Besides the discussion
of AD detection applications in the above, here, we first
review the literature on brain morphometry study research.
Due to our method is based on conformal brain mapping,
we then review surface-based brain mapping methods, which
are closely related to surface parameterizations. Furthermore,
we review the work of Sharon and Mumford (2006), which
inspired our current conformal welding signature.

In brain morphometry study research, volumetric mea-
sures of structures identified on 3D MRI have been used to
study group differences in brain structure and also to predict
diagnosis (Ashburner et al. 1998). Recent work has also used
shape-based features (Liu et al. 2010; Trouve and Younes
2005; Qiu and Miller 2008) and conformal invariants (Wang
et al. 2009) analyzing surface changes using pointwise dis-
placements of surface meshes, local deformation tensors,
or surface expansion factors, such as the Jacobian determi-
nant of a surface-based mapping. For closed surfaces homo-
topic to a sphere, spherical harmonics have commonly been
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used for shape analysis, and have their generalizations, e.g.,
eigenfunctions of the Laplace–Beltrami operator in a sys-
tem of spherical coordinates. These shape indices are also
rotation invariant, i.e., their values do not depend on the ori-
entation of the surface in the embedding space (Thompson
and Toga 1996; Gerig et al. 2001; Shen et al. 2007). Chung
et al. (2008) proposed a weighted spherical harmonic rep-
resentation. For a specific choice of weights, the weighted
SPHARM is shown to be the least square approximation
to the solution of an anisotropic heat diffusion on the unit
sphere. Davies et al. (2003) performed a study of anatomical
shape abnormalities in schizophrenia, using the minimal dis-
tance length approach to statistically align hippocampal para-
meterizations. For classification, linear discriminant analysis
or principal geodesic analysis can be used to find the discrim-
inant vector in the feature space for distinguishing diseased
subjects from healthy control subjects. Tosun et al. (2006)
proposed the use of three different shape measures to quan-
tify cortical gyrification and complexity. Gorczowski (2007)
presented a framework for discriminant analysis of popula-
tions of 3D multi-object sets. In addition to a sampled medial
mesh representation (Pizer et al. 1999), they also considered
pose differences as an additional statistical feature to improve
the shape classification results. Based on discrete Laplace-
Beltrami operator, heat kernel method (Chung et al. 2005)
was also applied to 3D biological shape analysis (Lai et al.
2010).

For brain surface parameterization research, Schwartz
et al. (1989) and Timsari and Leahy (2000) computed
quasi-isometric flat maps of the cerebral cortex. Hurdal and
Stephenson (2004) reported a discrete mapping approach that
uses circle packings to produce “flattened” images of cortical
surfaces on the sphere, the Euclidean plane, and the hyper-
bolic plane. Angenent et al. (2000) implemented a finite ele-
ment approximation for parameterizing brain surfaces via
conformal mappings. Gu et al. (Gu et al. 2004) proposed a
method to find a unique conformal mapping between any two
genus zero manifolds by minimizing the harmonic energy of
the map. The holomorphic 1-form based conformal para-
meterization (Wang et al. 2007) can conformally parame-
terize high genus surfaces with boundaries but the resulting
mappings have singularities. Other brain surface conformal
parametrization methods, the Ricci flow method (Wang et
al. 2006) and slit map method (Wang et al. 2008), can han-
dle surfaces with complicated topologies (boundaries and
landmarks) without singularities. Wang et al. (2009) applied
the Yamabe flow method to study statistical group differ-
ences in a group of 40 healthy controls and 40 subjects with
Williams syndrome, showing the potential of these surface-
based descriptors for localizing cortical shape abnormalities
in genetic disorders of brain development.

Conformal mappings have been applied in computer
vision for modeling the 2D shape space by Sharon and

Mumford (2006). The image plane is separated by a 2D
contour, both interior and exterior are conformally mapped
to disks, then the contour induces a diffeomorphism of the
unit circle (a differentiable and invertible, periodic function),
which is the signature of the contour. The signature is invari-
ant under translations and scalings, and able to recover the
original contour by conformal welding. Later, this method is
generalized to model multiple 2D contours with inner holes
in Lui et al. (2010). To the best of our knowledge, our method
is the first one to generalize Sharon and Mumford’s 2D shape
space to 3D surfaces, also from simply connected domains
to multiply connected domains. The proposed signature con-
siders the correlation of the regions surrounded by separate
closed contours.

1.3 Our Approach

For a 3D surface, all the contours (simple closed curves on the
3D surface) represent the “shape” of the surface. Inspired by
the beautiful research work of Sharon and Mumford (2006)
on 2D shape analysis [recently it has been generalized to
model multiple 2D contours (Lui et al. 2010)], we build a
Teichmüller space for 3D shapes using conformal mappings.
In this Teichmüller space, each 3D shape is represented by a
point in the space; each point denotes a unique equivalence
class up to Möbius transformations, which are conformally
equivalent transformations.

Given a genus zero closed 3D surface with nonintersecting
contours on the surface, each contour surrounds a 3D patch
with disk topology; all the contours partition the whole sur-
face to a set of 3D simply connected patches and a 3D base
surface with multiple boundaries. By conformal mapping,
the base surface can be mapped to a circle domain where one
boundary is mapped to the exterior unit disk, other boundaries
are mapped to the interior circles. The centers and radii of all
the interior circles form a conformal invariant, called confor-
mal module, unique up to Möbius transformations. Similarly,
by conformal mapping, each 3D patch is mapped to a unit
disk; therefore, each contour has two circle mapping results,
one is on the foreground unit disk mapping, the other is on
the base circle domain. Then a diffeomorphism of the unit
circle is constructed between these two circle mappings to
form a shape descriptor for the corresponding contour. For a
3D surface, the conformal module and the diffeomorphisms
of all the contours together form a global and unique shape
representation of the surface, called Teichmüller coordinates
in Teichmüller space; and vice versa, the representation can
recover the 3D contours on the 3D surface uniquely. By using
this signature, the similarities of 3D shapes can be quanti-
tatively analyzed, therefore, the classification and recogni-
tion of 3D objects can be performed from their observed
contours.

123



158 Int J Comput Vis (2013) 105:155–170

(a) (b) (c) (d)

Fig. 1 Diffeomorphism signature via uniformization mapping for a
genus zero surface with 3 simple closed contours. The curve on surface
γi in (a) surrounds the patch Si in (c) and is mapped to the bound-

ary ci of the circle domain Di in (c). The curve γi is also mapped to
the boundary of the base circle domain D0 in (b). The curves in (d)

demonstrate the diffeomorphisms for the 3 contours

1.3.1 Geometric Intuition

The brain cortical surface is partitioned to different functional
regions, each region is conformally mapped to a canonical
space such that its boundary curves are mapped to circles.
Then the boundary of each region induces a diffeomorphism
from the unit circle to itself. The shapes of canonical spaces
and the automorphisms of the unit circle form the signature.

Intuitively, the signature depends on many factors, not
only the geometry of the whole cortical surface and the
geometries of the regions, but also (more importantly) the
pattern to glue the regions to form the whole surface. For
example, if the geometry of one functional area is changed,
then part of the signature related to that area will be changed;
on the other hand, if we partition the whole surface dif-
ferently, by enlarging some areas and shrinking the others,
or alter the boundary of one area, then the signature will
be changed. Furthermore, if some shifting, twisting, or tor-
sion along the gluing boundaries is introduced during the
gluing process, then the signature will be changed accord-
ingly. Therefore, the proposed signature has a unique local-
global view. Namely, our signatures reflect both the local
geometries of regions and the global intrinsic relations among
them. Most existing methods emphasize on the geometries
of regions, in contrast, our method also emphasizes the geo-
metric relations.

Theoretically, according to Teichmüller theory and con-
formal welding theory, the boundaries of the regions can be
reconstructed from their signatures. Furthermore, the sig-
nature is invariant to scaling, translation, rotation, general
isometric deformation, and conformal deformation. All the
signatures form an abstract Riemannian manifold; the dis-
tance among different signatures can be measured by special
metrics. The signature is sensitive to the area change and the
change of geometric relations. In AD morphometry study,
when human brain cortical surface has atrophy, the signature
changes correspondingly. For example, if a functional area
shrinks, the corresponding circle of the contour decreases to

some extent on the canonical domain, the twisting or surface
tension change will be reflected by the signature as well.

Our work is based on conformal geometry, which is the
study of a set of angle-preserving transformations. All metric
oriented surfaces have conformal structures so it is a universal
structure for surface study. The Teichmüller space is a quo-
tient space of conformal equivalence relation. Similar to that
isometry indicates the deformation that does not change dis-
tance between any two points on the surface, a conformal
structure induces the deformation that does not change angle
structure between any two curves on the surface. So the pro-
posed statistics measures the difference between surfaces
with different conformal structures. Among all the diffeo-
morphisms between the surfaces, there exists a unique one
that induces the minimal angle distortion. This distortion can
be utilized as the distance.

1.3.2 Contributions

To the best of our knowledge, it is the first work to apply
conformal module and contour diffeomorphisms together
to brain morphometry research. Our experimental results
demonstrate that this novel and simple method may be use-
ful to analyze certain functional areas, and it may shed some
lights on detecting abnormality regions in brain surface mor-
phometry. Our major contributions in this work are as fol-
lows:

1. A new method to compute Teichmüller shape descriptor,
in a way that generalizes a prior 2D domain conformal
mapping work (Sharon and Mumford 2006).

2. The method is theoretically rigorous and general, which
presents a stable way to calculate the diffeomorphisms of
contours in general 3D surfaces based on surface Ricci
flow method.

3. It involves solving elliptic partial differential equations
(PDEs), so it is numerically efficient and computationally
stable.
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4. The shape descriptors are unique, global and invariant to
rigid motion and conformal deformation.

1.3.3 Pipeline

Figure 1 shows the pipeline for computing the conformal
module and diffeomorphism signature for a 3D surface with
3 closed contours. Here, we use a human brain hemisphere
surface whose functional areas are divided and labeled in dif-
ferent colors. The contours (simple closed curves) of func-
tional areas can be used to slice the surface open to con-
nected patches. As shown in frames (a–c), three contours
γ1, γ2, γ3 are used to divide the whole brain (a genus zero
surface S) to 4 patches S0, S1, S2, S3; each of them is con-
formally mapped to a circle domain (e.g., disk or annuli),
D0, D1, D2, D3. Note that γ1, γ2, γ3 are the contours of the
inferior parietal area, the fusiform area, and the superior
frontal area, respectively. In (b), the base circle domain is
normalized by Möbius transformation, such that the circle
c2 is centered at origin, c3 is centered along imaginary-axis,
then conformal module of the base domain is defined as the
centers and radii of circles c2, c3, i.e., Mod = (r2, y3, r3) =
(0.042263, 0.136767, 0.063546), where ri and (xi + iyi )

denote the radius and the center of circle ci , respectively.
In the mapping results, one contour is mapped to two cir-
cles in two mappings. The representation of the shape cor-
responding to each contour is a diffeomorphism of the unit
circle to itself, defined as a mapping between periodic polar
angles (θ1, θ2), θ1, θ2 ∈ [0, 2π ]. The proper normalization
is employed to remove Möbius ambiguity. As shown in (d),
the curves demonstrate the diffeomorphisms for three con-
tours. The diffeomorphisms induced by the conformal maps
of each curve together with the conformal module form a
unique shape signature, which is the Teichmüller coordinates
in Teichmüller space and may be used for shape comparison
and classification.

We tested our algorithm in the segmented regions on a set
of brain left cortical surfaces extracted from 3D anatomical
brain MRI scans from Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset (152 healthy control subjects versus
169 AD patients). The proposed method can reliably com-
pute the shape signatures on three cortical functional areas by
computing the conformal modules and the diffeomorphisms
of all the three contours. Using these signatures as statis-
tics, our method achieved the 95 percent confidence interval
91.38±0.55 % for the average accuracy rate to differentiate
a set of AD patients from healthy control subjects.

1.3.4 Organization

The paper is organized as follows: Sect. 2 introduces the the-
oretical background on surface uniformization and Teich-
müller space and gives the main theorem about the novel

shape signature. Section 3 introduces the computation details
of the proposed Teichmüller shape descriptor. Numerical
experiments and applications to AD study are discussed in
Sect. 4. Section 5 concludes the paper and gives the future
work. The theoretic proof for the main theorem is detailed in
Appendix section.

2 Theoretical Background

In this section, we briefly introduce the theoretical foun-
dations necessary for the current work. For more details,
we refer readers to the classical books, such as Riemann
surface theory (Farkas and Kra 1991), Teichmüller theory
(Gardiner and Lakic 2000), differential geometry (Schoen
and Yau 1994), and complex analysis (Henrici 1988).

2.1 Surface Uniformization Mapping

Conformal mapping between two surfaces preserves angles.
Suppose (S1, g1) and (S2, g2) are two surfaces embedded in
R

3, g1 and g2 are the induced Riemannian metrics.

Definition 1 (Con f ormal Mapping) A mapping φ : S1 →
S2 is called conformal, if the pull back metric of g2 induced
by φ on S1 differs from g1 by a positive scalar function:

φ∗g2 = e2λg1, (1)

where λ : S1 → R is a scalar function, called the conformal
factor.

For example, all the conformal automorphisms of the unit
disk form the Möbius transformation group of the disk, each
mapping is given by

z → eiθ z − z0

1 − z̄0z
. (2)

All the conformal automorphism group of the extended com-
plex plane C ∪ {∞} is also called Möbius transformation
group, each mapping is given by

z → az + b

cz + d
, ad − bc = 1, a, b, d, c ∈ C. (3)

By stereo-graphic projection, the unit sphere can be confor-
mally mapped to the extended complex plane. Therefore, the
Möbius transformation group is also the conformal automor-
phism group of the unit sphere.

A circle domain on the complex plane is the unit disk with
circular holes. A circle domain can be conformally trans-
formed to another circle domain by Möbius transformations.
All genus zero surfaces with boundaries can be conformally
mapped to circle domains:

Theorem 1 (Uniformization) Suppose S is a genus zero Rie-
mannian surface with boundaries, then S can be conformally
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mapped onto a circle domain. All such conformal mappings
differ by a Möbius transformation on the unit disk.

This theorem can be proven using Ricci flow straight-
forwardly. Therefore, the conformal automorphism group of
S, Con f (S) is given by

Con f (S) := {φ−1 ◦ τ ◦ φ|τ ∈ Möb(S2)}. (4)

2.2 Teichmüller Space

Definition 2 (Con f ormal Equivalence) Suppose (S1, g1)

and (S2, g2) are two Riemann surfaces. We say S1 and S2

are conformally equivalent if there is a conformal diffeomor-
phism between them.

All Riemann surfaces can be classified by the confor-
mal equivalence relation. Each conformal equivalence class
shares the same conformal invariant, the so-called conformal
module. The conformal module is one of the key component
for us to define the unique shape signature.

Definition 3 (Teichmüller Space) Fixing the topology of the
surfaces, all the conformal equivalence classes form a man-
ifold, which is called the Teichmüller space.

The Teichmüller space is a quotient space of confor-
mal equivalence relation. For example, all topological disks
(genus zero Riemann surfaces with single boundary) can be
conformally mapped to the planar disk. Therefore, the Teich-
müller space for topological disks consists of a single point.

All the surfaces in real life are Riemann surfaces, therefore
with conformal structures. Two surfaces share the same con-
formal structure, if there exists a conformal mapping between
them. Conformal modules are the complete invariants of con-
formal structures and intrinsic to surface itself. They can
serve as the coordinates in Teichmüller space.

Suppose a genus zero Riemann surface S has b boundary
components {γ1, γ2, . . . , γb}, ∂S = γ1 + γ2 + . . . + γb, φ :
S → D is the conformal mapping that maps S to a circle
domain D, such that it satisfies the following Möbius nor-
malization conditions,

1. φ(γ1) is the exterior boundary of the D;
2. φ(γ2) centers at the origin; and
3. The center of φ(γ3) is on the imaginary axis.

Definition 4 (Con f ormal Module) The conformal module
of the surface S (also the circle domain D) is given by

Mod(S) = {(ci, ri )|i = 1, 2, . . . , b} , (5)

where (ci = xi + iyi , ri ) denotes the center and the radius of
circle φ(γi ).

Due to the Möbius normalization, (c1, r1) = (0 +
i0, 1), (c2, r2) = (0 + i0, r2), (c3, r3) = (0 + iy3, r3),
then the Teichmüller space of genus zero surfaces with b
boundaries is of 3b −6 dimensional. For a doubly connected
domain, the circle domain by conformal mapping is a unit
annulus; its conformal module is of 1 dimension, defined as

− log r2

2π
. (6)

Theorem 2 (Teichmüller Space (Seppala et al. 1992)) The
dimension of the Teichmüller space of genus zero surface
with b boundaries, T0,b, is 1 if b = 2, and 3b − 6 if b > 2.

The Teichmüller space has a so-called Weil-Peterson met-
ric (Sharon and Mumford 2006), so it is a Riemannian
manifold. Furthermore it is with negative sectional curva-
ture, therefore, the geodesic between arbitrary two points is
unique.

2.3 Surface Ricci Flow

Surface Ricci flow is the powerful tool to compute uni-
formization. Ricci flow refers to the process of deforming
Riemannian metric g proportionally to the curvature, such
that the curvature K evolves according to a heat diffusion
process, eventually the curvature becomes constant every-
where. Suppose the metric g = (gi j ) in local coordinate.
Hamilton (1988) introduced the Ricci flow as

dgi j

dt
= −K gi j . (7)

Surface Ricci flow conformally deforms the Riemannian
metric, and converges to constant curvature metric (Chow
et al. 2006). Furthermore, Ricci flow can be used to compute
the unique conformal Riemannian metric with the prescribed
curvature.

Theorem 3 (Hamilton and Chow) Suppose S is a closed sur-
face with a Riemannian metric. If the total area is preserved,
the surface Ricci flow will converge to a Riemannian metric
of constant Gaussian curvature.

2.4 Teichmüller Shape Descriptor

Suppose 	 = {γ0, γ1, . . . , γb} is a family of nonintersect-
ing smooth closed curves on a genus zero closed surface.
	 segments the surface to a set of connected components
{
0,
1, . . . , 
b}, each segment 
i is a genus zero surface
with boundary components. Construct the uniformization
mapping φk : 
k → Dk to map each segment 
k to a circle
domain Dk, 0 ≤ k ≤ b. Assume γi is the common bound-
ary between 
 j and 
k , then φ j (γi ) is a circular boundary
on the circle domain D j , φk(γi ) is another circle on Dk . Let
fi |S1 := φ j ◦φ−1

k |S1 : S
1 → S

1 be the diffeomorphism from
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the circle to itself, which is called the signature of γi . The
above construction process is called conformal welding.

Definition 5 (Signatureof aFamilyo f Loops) The signa-
ture of a family of nonintersecting closed 3D curves 	 =
{γ0, γ1, . . . , γb} on a genus zero closed surface is defined
as the combination of the conformal modules of all the
connected components and the diffeomorphisms of all the
curves:

S(	) := { f0, f1, . . . , fb}
∪{Mod(D0), Mod(D1), . . . , Mod(Db)}. (8)

The following main theorem plays a fundamental role for
the current work. Note that if a circle domain Dk is a disk,
then its conformal module can be omitted from the signature.

Theorem 4 (Main Theorem) The family of smooth 3D
closed curves 	 on a genus zero closed Riemannian sur-
face is determined by its signature S(	), uniquely up to a
conformal automorphism of the surface η ∈ Con f (S).

The proof of Theorem 4 can be found in the Appendix
section. The main theorem states that the proposed signature
determines shapes uniquely up to a Möbius transformation.
We can further perform a normalization that fixes ∞ to ∞
and that the differential carries the real positive axis at ∞
to the real positive axis at ∞, as in Sharon and Mumford’s
paper (Sharon and Mumford 2006). The signature can then
determine the shapes uniquely up to translations and scalings.

The shape signature S(	) gives us a complete representa-
tion for the space of shapes. It inherits a natural metric. Given
two shapes 	1 and 	2. Let S(	i ) := { f i

0 , f i
1 , . . . , f i

k } ∪
{Mod(Di

0), Mod(Di
1), . . . , Mod(Di

k)} (i = 1, 2). We can
define a metric d(S(	1), S(	2)) between the two shape sig-
natures using the natural metric in the Teichmüller space,
such as the Weil-Petersson metric (Sharon and Mumford
2006). Our signature is stable under geometric noise. Our
algorithm depends on conformal maps from surfaces to cir-
cle domains using discrete Ricci flow method.

3 Algorithm

In this section, we explain the computational details of Teich-
müller shape descriptor. Given a genus zero 3D surface with
a family of closed curves, the whole domain is first divided
by the closed curves into several connected components. We
compute the conformal mapping for each connected com-
ponent by circular uniformization; then after a Möbius nor-
malization, compute the conformal modules for each circle
domain, and the diffeomorphisms for each closed curve. The
pipeline is shown in Fig. 1.

Fig. 2 Discrete Ricci flow with circle packing metric. For the triangle
face [vi , v j , vk ], each vertex vi with a circle (vi , ri ), where ri is the
radius,vi is the center; on each edge [vi , v j ], two circles (vi , ri ) and
(v j , r j ) intersect at an acute angle �i j . The red circle is orthogonal to
the three circles at three vertices (Color figure online)

3.1 Circular Uniformization Mapping

We apply discrete Ricci flow method (Jin et al. 2008) to
conformally map the surfaces onto planar circle domains
φk : Sk → D. The surface is represented as a triangle mesh
. A discrete Riemannian metric is represented as the edge
length. For each face [vi , v j , vk], the edge lengths satisfy the
triangle inequality: li j + l jk > lki . The angles on each face
are determined by the edge lengths according to the cosine
law. The discrete Gaussian curvature Ki at vertex vi ∈ Σ

can be computed as the angle deficit,

Ki =
{

2π − ∑
[vi ,v j ,vk ]∈Σ θ

jk
i , vi 	∈ ∂Σ

π − ∑
[vi ,v j ,vk ]∈Σ θ

jk
i , vi ∈ ∂Σ

(9)

where θ
jk
i represents the corner angle attached to vertex vi

in the face [vi , v j , vk], and ∂Σ represents the boundary of
the mesh. The Gauss–Bonnet theorem (Gu et al. 2004) states
that the total curvature is a topological invariant. It still holds
on meshes, as follows:∑
vi ∈V

Ki = 2πχ(Σ), (10)

where χ(Σ) denotes the Euler characteristic number of Σ ,
with χ = 2 − 2g − b = 2 − b (genus g = 0), boundary
number b > 0.

The discrete Ricci flow can be carried out through circle
packing metric, which is a discretization of conformality and
was introduced by Thurston (1980). As shown in Fig. 2, we
associate each vertex vi with a circle (vi , ri ), where ri is the
radius. Let ui = log ri be the discrete conformal factor. Let
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(a) input (front-back view) (b) circle domain (c) checker-board texture mapping

Fig. 3 Circular uniformization mapping for a brain cortical surface
with 3 boundaries. (a) shows the front and back views of the input 3D
surface which is a genus zero surface with 3 boundaries, γi , i = 1, 2, 3.
(b) shows the circle domains of conformal mapping results of the input
surface, where each 3D boundary is mapped to a circle, γ1 is mapped to

the exterior unit circle,γ2 andγ3 are mapped to interior circles. (c) shows
the front and back views of the checker-board texture mapping results
induced by the conformal mapping. The right angles of checker-board
are well preserved on the texture mapping results, which demonstrates
the angle preserving property of conformal mapping

[vi , v j ] be an edge, two circles (vi , ri ) and (v j , r j ) intersect
at an acute angle �i j . The edge length is given by

li j =
√

r2
i + r2

j + 2rir j cos �i j . (11)

The discrete Ricci flow is defined as follows:

dui (t)

dt
= (K̄i − Ki ), (12)

where K̄i is the user defined target curvature and Ki is the
curvature induced by the current metric. The discrete Ricci
flow has exactly the same form as the smooth Ricci flow,
which conformally deforms the discrete metric according to
the Gaussian curvature. The computation is based on circle
packing metric (Jin et al. 2008).

Suppose Σ is a genus zero mesh with multiple bound-
ary components. The uniformization conformal mapping
φ : Σ → D, where D is the circle domain, can be computed
using Ricci flow by setting the prescribed curvature as fol-
lows: (a) the geodesic curvature on the exterior boundary is
+1 everywhere; (b) the geodesic curvature on other bound-
aries are negative constants; (c) the Gaussian curvature on
interior points are zeros everywhere. Figure 3 shows an exam-
ple. We use this method to compute conformal mapping, then
get conformal module and diffeomorphism descriptor. The
main challenge is that the target curvature is dynamically
determined by the metric. The metric is evolving, so is the
target curvature. The conformal mapping for a genus zero
mesh with only one boundary component can be computed
similarly. The detailed algorithm is reported in Wang et al.
(2012).

3.2 Computing Teichmüller Shape Descriptor

After the computation of the conformal mapping, each con-
nected component is mapped to a circle domain. We compute
the Teichmüller shape descriptor as in Eq. 8.

We define an order for all the nonintersecting closed
curves on the surface S, {γ0, γ1, γ2, . . . , γb}, this induces
an order for all the boundary components on each segment,
{S0, S1, S2, . . . , Sb}. By removing all the segments from S,
the left segment is denoted as S̄, which is a multiply con-
nected domain.

For the multiply connected segments (genus zero surfaces
with multiple boundaries), the circle domain is the unit disk
with multiple inner holes. Two circle domains are confor-
mally equivalent, if and only if they differ by a Möbius trans-
formation. Suppose the boundaries of a circle domain D are
∂ D = γ0 −γ1 −γ2 . . .−γb, each γk is a circle (ck, rk), where
ck denotes the center, rk denotes the radius. By the definition
for the conformal module of a circle domain, we normalize
each circle domain using a Möbius transformation, such that
γ0 becomes the unit exterior circle, c1 is at the origin, c2 is
on the imaginary axis. Then the normalized circle domain
is determined by its conformal module (Zeng et al. 2008),
which can be computed directly as in Eq. 5,

Mod(D) = {ck, k > 1} ∪ {r j , j > 0}. (13)

For those simply connected segments (genus zero surfaces
with only one boundary), the circle domain is the unit disk.
We compute its mass center and use a Möbius transformation
to map the center to the origin. Their conformal modules can
be omitted in the shape signature.

Each closed curve γk on the 3D surface becomes the
boundary components on two segments, both boundary com-
ponents are mapped to a circle under the uniformization
mapping. Then each boundary component gives a diffeo-
morphism of the unit circle to itself, defined as the mapping
between the radial angles on two circles,

Di f f (γk) = (θ1
k , θ2

k ), θ1
k , θ2

k ∈ [0, 2π ]. (14)
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(a)  superior view (b)  inferior view

Fig. 4 Illustration of function areas on the left half brain cortex

In order to keep consistency, we define a marker pk on the
boundary as the starting point, i.e., θ1

k (pk) = θ2
k (pk) = 0, to

compute the radial angles for the whole curve.

4 Experimental Results

We demonstrate the efficiency and efficacy of our method by
analyzing the human brain cortical surfaces of AD patients
and healthy control subjects. The brain cortical surfaces are
represented as triangular meshes. We implement the algo-
rithm using generic C++ on windows XP platform, with Intel
Xeon CPU 3.39GHz, 3.98G RAM. The numerical systems
are solved using Matlab C++ library. In our experiments,
it takes less than one minute to compute the Teichmüller
shape descriptor, including the conformal modules and the
diffeomorphism curves, for a brain hemisphere surface with
3 contours with 100K triangles, as illustrated in Fig. 1. In the
following, we explain data source, data processing, experi-
mental setting and results, and performance comparison and
discussion.

4.1 Data Source

Data used in the preparation of this article were obtained
from the ADNI database (http://www.adni.loni.ucla.edu).
The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administra-
tion (FDA), private pharmaceutical companies and non-profit

organizations, as a $60 million, 5-year public-private part-
nership. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography, other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment (MCI) and early AD. Determination of sensitive
and specific markers of very early AD progression is intended
to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and
cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Califor-
nia at San Francisco. ADNI is the result of efforts of many
co-investigators from a broad range of academic institutions
and private corporations, and subjects have been recruited
from over 50 sites across the U.S. and Canada. The initial
goal of ADNI was to recruit 800 adults, ages 55–90, to partic-
ipate in the research, approximately 200 cognitively normal
older individuals to be followed for 3 years, 400 people with
MCI to be followed for 3 years and 200 people with early
AD to be followed for 2 years. For up-to-date information,
see http://www.adni-info.org.

4.2 Data Preprocessing

The structural MRI images were from the ADNI (Jack et al.
2007; Mueller et al. 2005). We tested our algorithm on
ADNI baseline image dataset. We used Freesurfer’s auto-
mated processing pipeline (Fischl et al. 1999; Dale et al.
1999) for automatic skull stripping, tissue classification,

123

http://www.adni.loni.ucla.edu
http://www.adni-info.org


164 Int J Comput Vis (2013) 105:155–170

Fig. 5 Markers for computing curve diffeomorphisms. The marker for
a curve is selected as a point on the curve which is the intersection of
three functional areas. In our test, the markers for the applied three
curves are shown as the yellow points (Color figure online)

surface extraction, and cortical and subcortical parcellations.
It also calculates volumes of individual grey matter parcella-
tions in mm3 and surface area in mm2, provides surface and
volume statistics for about 34 different cortical structures,
and computes geometric characteristics such as curvature,
curvedness, and local foldedness for each of the parcella-
tions (Desikan et al. 2006).

According to the introduction in Desikan et al. (2006), we
labeled different cortical surface functional areas in different
colors. Figure 4 demonstrates different function areas on a
left half brain. In this work, we studied the correlations of
different regions of brain cortical surface for group difference
analysis.

4.3 Experimental Setting

We tested the discrimination ability of the proposed shape
descriptor on a set of left brain hemispheres of 152 healthy
control subjects and 169 AD patients. Each half brain sur-
face mesh has 100K triangles. Among 34 cortical functional
areas, we selected 3 regions of interest for study, such as
superior frontal, fusiform and inferior parietal areas as shown
in Fig. 1, correspondingly, represented by 3 closed curves,
γ1, γ2, γ3, on the half brain surfaces. In this work, we used the
left brain hemisphere surfaces for testing shape descriptors.

These three closed curves segment a brain hemisphere sur-
face to 4 patches; one topological annulus (called the base
domain), three topological disks. The base domain with three
boundaries is mapped to a circle domain, one boundary to the
exterior unit circle, one boundary to the inner concentric cir-
cle, the rest one to the inner circle centered at the imaginary
axis. The conformal module of the base domain is computed
as in Eq. 13. In the conformal mapping of each topological
disk segment, the mass center is mapped to the origin of the
unit disk. In addition, one marker on each curve is extracted as

the starting point of computing radial angles. Here, we auto-
matically selected the intersection point of three specified
regions along the curve, as shown in Fig. 5. The diffeomor-
phism descriptor for each curve, computed by Eq. 14, is plot-
ted as a monotonic curve within the square [0, 2π ]×[0, 2π ].
We uniformly sampled 1, 000 points on the curve. Figure 6
illustrates the shape descriptors for 3 healthy control cortical
surfaces and 3 AD brain surfaces.

4.4 Numerical Analysis of Signatures among AD
and Healthy Control Subjects

We first analyzed the signature itself thoroughly through
the data obtained from the AD and healthy control subject
groups by considering their distribution and their differ-
ence between groups. The statistical difference of signatures
between groups are evaluated using t tests.

The proposed signature includes two parts, one is con-
formal module Mod, i.e., ci and ri, the other is curve diffeo-
morphism Diff. Conformal modules describe surface patches
separately, while curve diffeomorphisms represent the cor-
relation between surface patches. The ci and ri as a whole
form the conformal module signature; it is invariant to scal-
ings, rotations, and translations, and is unique up to Möbius
transformations. Considering only ci or ri will loose much
geometric information of each surface patch; when applied
for AD classification, neither will get satisfying result, e.g.,
much less than 63.60 % of (Mod) in Table 2 in our exper-
iment. For the completeness of signature and the coherence
to theory, we usually consider ci and ri as a whole, the
so-called conformal modules, and combine them with the
curve diffeomorphisms to form the Teichmüller signature in
a local-global view for a 3D surface shape.

In the following we illustrated the discriminative power
of signature parameters both separately and compositely by
the tests on two subject groups.

As prior AD research reported, the brain atrophy is an
important biomarker of AD. Our signature is sensitive to area
changes caused by atrophy. Figure 7 gives the box plots of the
components of conformal module Mod = (r2, y3, r3), which
shows the distribution of each descriptor for each group. The
AD group tends to have smaller radii r2, r3 and lower center
y3 in the mapping domain; the 95 % confidence intervals
for the mean value is given in Table 1. Figure 6 illustrates
the curve plots of diffeomorphism signatures. The variations
(L2 norm between each pair) among red, green, blue curves
reflect the twisting in the gluing process. It is obvious that the
variations (twisting) of AD patients’ are greater than those
of healthy controls. All of these results verify that our new
signature is able to capture the brain cortical atrophy related
to AD.

To demonstrate the completeness of our new shape sig-
nature, we computed the box plots of (Mod), (Di f f ), and
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Fig. 6 Teichmüller shape descriptor (Mod, Di f f ) of 3 healthy control (CTL) brain cortexes and 3 Alzheimer’s disease (AD) brain cortexes, both
of which are randomly selected from the database. The left half brain with 3 contours is considered

Fig. 7 Box plots for the distribution of components of conformal module signatures for healthy control subjects and AD patients. (a–c) describe
the box plots and p-values for (r2), (y3), and (r3), respectively
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the proposed signature, (Mod, Di f f ), as shown in Fig. 8
for two groups. The shape difference with the complete sig-
nature (Mod, Di f f ) between two groups tends to be more
statistically significant with p-value = 0.0007 < 0.05 than
the signature component (Mod) or (Di f f ). The results per-
fectly matched the theoretical expectation.

4.5 Classification among AD and Healthy Control Subjects

For our classification purpose, we set 80 % of each cat-
egory to be training samples, the rest 20 % testing sam-
ples. In order to obtain the fair results, we randomly
selected the training set each time and computed the average
recognition rate over 1,000 times. We applied the support
vector machine (SVM) (http://www.csie.ntu.edu.tw/~cjlin/
libsvm/) as classifier, where the linear kernel function was
employed, and we used C-SVM and chose C = 5 by
running cross validation. Table 2 shows that the 95 per-

Table 1 The 95 percent confidence intervals for the average values of
conformal module components

Sig. r2 y3 r3

CTL 0.0454 ± 0.0006 0.1477 ± 0.0049 0.0641 ± 0.0022

AD 0.0441 ± 0.0007 0.1404 ± 0.0019 0.0609 ± 0.0009

Table 2 Average recognition accuracy rates (%) for applying different
signatures among 152 healthy control subjects versus 169 AD patients,
where 80 % of the dataset are randomly selected for training and the
rest 20 % for testing

Sig. Mod, Di f f Di f f Mod V ol Area

Rate % 91.38 85.71 63.60 68.20 70.23

±0.55 ±0.68 ±0.60 ±0.57 ±0.73

The average recognition rate interval with 95 percent confidence is com-
puted over 1,000 times. Linear SVM method is used for classification

Fig. 9 Histogram of volumes for 152 healthy control (CTL) subjects
and 169 Alzheimer’s disease (AD) patients

cent confidence interval for the average recognition rate is
91.38 ± 0.55 %, by the signature (Mod, Di f f ) under the
above experimental setting. We also tested the signatures,
diffeomorphism (Di f f ) and conformal module (Mod),
separately. The experimental results demonstrate that the
recognition rates are much less than the complete signature
(Mod, Di f f ), which is coherent to the statistical signifi-
cance analysis as shown in Fig. 8. That satisfies the fact
that (Di f f ) describes the more detailed correlation of each
patch to the base domain through the closed curves, while
(Mod) captures the global shape information only through
the base domain; both together are required to recover the
closed curves on 3D surface.

4.5.1 Comparison with Two Simple Brain Measurements

For a simple comparison, we computed the volume for the
left brain cortex as a signature, (V ol). The 95 percent con-
fidence interval for the average recognition rate of volume
using linear SVM in the above setting is 68.20±0.57 %. The
histogram for volume illustrated in Fig. 9 intuitively demon-
strates that the volume signature cannot differentiate the AD
and healthy control groups accurately. We also computed

Fig. 8 Box plots for the distribution of components of signatures for healthy control subjects and AD patients. (a–c) describe the box plots and
p-values for signature components (Mod), (Di f f ), and the complete signature (Mod, Di f f ), respectively
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the surface areas for the base domain and 3 regions as
signature (Area) = (A0, A1, A2, A3); the 95 percent con-
fidence interval for the average recognition rate is 70.23 ±
0.73 %. Although these two statistics are not popular shape
descriptors for AD in the literature and a more careful and
thorough study such as Cuingnet et al. (2011) and Chincar-
ini et al. (2011) is necessary, the results helped illustrate our
testing data nature and show the potential of our proposed
shape signature.

4.6 Discussion

4.6.1 Stability to Geometric Noise

The proposed work is based on surface Ricci flow research.
Computing conformal module is equivalent to solving an
elliptic PDE on surfaces. According to geometric elliptic
PDE theory, the solution smoothly depends on the geom-
etry and boundary conditions. In practice, the computation
process and the solution are quite stable and robust to geo-
metric noises.

4.6.2 Functional Area Selection

Patients with AD often experience some functional deficits,
such as visual deficits, as one of their earliest complaints.
Based on this fact, we expect that the AD progress will change
the characteristics of some functional areas, and some bio-
markers related to AD will emerge. Therefore, we developed
the novel and practical tool to verify the correlation between
the functional area morphometry and the AD progress.

A full and thorough study of which areas are most related
to AD is not the main focus of the current work. We chose
the areas mainly based on previous researches. For exam-
ple, Guo et al. (2010) and Hua et al. (2010) have indi-
cated that the superior temporal area and precuneus and
posterior cingulate areas have significant atrophy in AD
group. In Shi et al. (2011), morphometry changes of ten
functional areas were studied for their relationship to AD.
In our experiments, we selected three areas from the ten
areas, fusiform, superior frontal and inferior parietal, and
tested our method on these areas. However, our framework
is quite general and provides a convenient tool for future
research to continue searching other AD-related functional
areas.

4.6.3 Biological Meaning of Teichmüller Signature

For surface-based AD research, the state-of-the-art work has
used cortical thickness as the measurement (Thompson et al.
2003; Cuingnet et al. 2011). However, recent research (Win-
kler et al. 2010) indicated that the commonly used cortical
thickness and cortical area measurements are genetically and

phenotypically independent. The biological meaning of the
proposed shape signature is closely related to brain atrophy
so it is more related to cortical area changes.

The proposed signature reflects both local and global
geometries and the intrinsic relations among different func-
tional areas. The relation between the signature and the
shapes of the areas on cortical surface is highly non-linear
and complicated. The atrophy on one functional area will
distort the local geometry therefore change the relation to
other areas; this relation can be captured by our signature as
well. Intuitively, the diffeomorphisms of the circles reflect
the gluing pattern among functional areas. The brain atrophy
will twist the gluing pattern, and introduces more torsion.
For example, in Fig. 6, the variations (twisting) among red,
green, blue curves of AD patients’ are greater than those of
healthy controls. The classification performance with area
measurement in Table 2 demonstrates that the AD is related
to the functional area changes, which are usually caused by
brain atrophy. Therefore, the proposed signature is closely
related to brain atrophy.

Our method provides a unique and intrinsic shape sig-
nature to study brain morphometry changes caused by brain
atrophy. It studies the sensitivity and reproducibility of shape
features computed in the entire brain surface domain. The
gained insights help improve our understanding to AD related
pathology and discover the precise etiology of the grey matter
changes. The preliminary results demonstrates that the shape
signature provides a reasonably good discriminant power for
AD biomarker research.

The method can be equally applied to other regions as
well. In future, we may study and compare other functional
areas in the medial temporal lobe.

4.6.4 Comparison on AD Detection

Cuingnet et al. (2011) did a thorough study and comparison
of 10 methods for AD classification on ADNI; Chincarini et
al. (2011) proposed a feature vector which consists of vol-
umes of 9 ROI measurements. Both papers reported impres-
sive results. Although using the same ADNI dataset, a fair
and direct comparison between our method and their meth-
ods is difficult to perform. Most existing methods focus on
the local geometries, whereas our method emphasizes both
the local geometries of regions and the relations among them
(how to glue them). Our statistical results show that the pro-
posed shape feature is promising as AD shape biomarkers.
Whether or not this approach provides more relevant corre-
spondences than those afforded by other measurements (grey
matter thickness, ROI such as hippocampal volume) requires
careful validation for each application. More importantly, we
anticipate that our conformal structure based features may
provide new measurements on structural MRI and will be
complementary to these other features. We plan to combine
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them in future for AD classification. If the combined shape
features help improve classification accuracy, then it would
support the use of conformal structure based measurements
such as Teichmüller shape descriptors in AD research.

4.6.5 Future Exploration

For brain cortex morphometry analysis, the current existing
methods (Cuingnet et al. 2011) mainly rely on grey matter
thickness. To the best of our knowledge, this is the first work
that features are defined on certain functional area bound-
aries. From our experience and the earlier work Winkler et al.
(2010), our hypothesis is that our new feature would be com-
plementary to thickness measurement. Another interesting
question is whether our new shape signature can improve
classification on MCI-AD or MCI-healthy control. We plan
to continue our exploration further on these two topics in our
future work.

5 Conclusions and Future Work

In this paper, we propose a novel method that computes
the global shape signatures on specified functional areas on
brain cortical surfaces in Teichmüller space. We applied it to
study the shape difference of cortical surfaces between AD
and healthy control groups. The method is general, robust,
and effective; it has great potential to be employed to gen-
eral brain morphometry study. In the future, we will further
explore and validate other applications of this global corre-
lation shape signature in neuroimaging and shape analysis
research.
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6 Appendix: Proof of Theorem 4

Proof See Fig. 10. In the left frame, a family of planar
smooth curves 	 = {γ0, . . . , γ5} divide the plane to seg-
ments {
0,
1, . . . , 
6}, where 
0 contains the ∞ point.
We represent the segments and the curves as a tree in the sec-
ond frame, where each node represents a segment 
k , each
link represents a curve γi . If 
 j is included by 
i , and 
i

and 
 j shares a curve γk , then the link γk in the tree connects

 j to 
i , denoted as γk : 
i → 
 j . In the third frame, each
segment 
k is mapped conformally to a circle domain Dk

by �k . The signature for each closed curve γk is computed
fi j = �i ◦ �−1

j |γk , where γk : 
i → 
 j in the tree. In the
last frame, we construct a Riemann sphere by gluing circle
domains Dk’s using fi j ’s in the following way. The gluing
process is of bottom up. We first glue the leaf nodes to their
fathers. Let γk : Di → D j , D j be a leaf of the tree. For each
point z = reiθ in D j , the extension map is

Gi j (reiθ ) = re fi j (θ). (15)

We denote the image of D j under Gi j as S j . Then we
glue S j with Di . By repeating this gluing procedure bot-
tom up, we glue all leafs to their fathers. Then we prune all
leaves from the tree, and glue all the leaves of the new tree,
and prune again. By repeating this procedure, eventually, we
get a tree with only the root node, then we get a Riemann
sphere, denoted as S. Each circle domain Dk is mapped to
a segment Sk in the last frame, by a sequence of extension
maps. Suppose Dk is a circle domain, a path from the root
D0 to Dk is {i0 = 0, i1, i2, . . . , in = k}, then the map from
Gk : Dk → Sk is given by:

Gk = Gi0i1 ◦ Gi1i2 ◦ . . . ◦ Gin−1in . (16)

Note that, G0 is identity. Then the Beltrami coefficient of
G−1

k : Sk → Dk can be directly computed, denoted as μk :
Sk → C. The composition �k ◦ G−1

k : Sk → 
k maps
Sk to 
k , because �k is conformal, therefore the Beltrami
coefficient of �k ◦ G−1

k equals to μk .
We want to find a map from the Riemann sphere S to

the original Riemann sphere 
,� : S → 
. The Beltrami-
coefficient μ : S → C is the union of μk’s each segments:
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Fig. 10 Proof for the main theorem, the signature uniquely determines the family of closed curves unique up to a Möbius transformation

μ(z) = μk(z),∀z ∈ Sk . The solution exists and is unique up
to a Möbius transformation according to Quasi-conformal
Mapping theorem (Gardiner and Lakic 2000). ��

Note that, the discrete computational method is more
direct without explicitly solving the Beltrami equation. From
the Beltrami coefficient μ, one can deform the conformal
structure of Sk to that of 
k , under the conformal structures
of 
k,� : S → 
 becomes a conformal mapping. The con-
formal structure of 
k is equivalent to that of Dk , therefore,
one can use the conformal structure of Dk directly. In discrete
case, the conformal structure is represented as the angle struc-
ture. Therefore in our algorithm, we copy the angle structures
of Dk’s to S, and compute the conformal map � directly.

References

Angenent, S., Haker, S., Kikinis, R., & Tannenbaum, A. (2000). Nondis-
torting flattening maps and the 3D visualization of colon CT images.
IEEE Transactions on Medical Imaging, 19, 665–671.

Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C.,
& Friston, K. (1998). Identifying global anatomical differences:
Deformation-based morphometry. Human Brain Mapping, 6, 348–
357.

Chincarini, A., Bosco, P., Calvini, P., Gemme, G., Esposito, M., Olivieri,
C., et al. (2011). Local MRI analysis approach in the diagnosis of
early and prodromal Alzheimer’s disease. Neuroimage, 58(2), 469–
480.

Chow, B., Lu, P., & Ni, L. (2006). Hamilton’s Ricci flow. Providence:
American Mathematical Society.

Chung, M. K., Dalton, K. M., & Davidson, R. J. (2008). Tensor-based
cortical surface morphometry via weighted spherical harmonic rep-
resentation. IEEE Transactions on Medical Imaging, 27, 1143–1151.

Chung, M. K., Robbins, S. M., Dalton, K. M., Davidson, R. J., Alexan-
der, A. L., & Evans, A. C. (May 2005). Cortical thickness analysis
in autism with heat kernel smoothing. Neuroimage, 25, 1256–1265.

Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S.,
Habert, M., et al. (2011). Automatic classification of patients with
Alzheimer’s disease from structural MRI: A comparison of ten meth-
ods using the ADNI database. Neuroimage, 56(2), 766–781.

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based
analysis I: Segmentation and surface reconstruction. Neuroimage,
27, 179–194.

Davies, R. H., Twining, C. J., Allen, P. D., Cootes, T. F., & Taylor,
C. J. (2003). Shape discrimination in the hippocampus using an
MDL model. In International conference on information process-
ing in medical imaging (IPMI). Ambleside.

Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B.
C., Blacker, D., et al. (2006). An automated labeling system for
subdividing the human cerebral cortex on MRI scans into gyral based
regions of interest. Neuroimage, 31, 968–980.

Farkas, H. M., & Kra, I. (1991). Riemann surfaces (Graduate texts in
mathematics). New York: Springer.

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based
analysis II: Inflation, flattening, and a surface-based coordinate sys-
tem. NeuroImage, 9, 195–207.

Fox, N., Scahill, R., Crum, W., & Rossor, M. (1999). Correlation
between rates of brain atrophy and cognitive decline in AD. Neu-
rology, 52(8), 1687–1689.

Frisoni, G., Fox, N., Jack, C., Scheltens, P., & Thompson, P. (2010). The
clinical use of structural MRI in Alzheimer disease. Nature Reviews
Neurology, 6(2), 67–77.

Gardiner, F. P., & Lakic, N. (2000). Quasiconformal Teichmüller theory.
Providence: American Mathematical Society.

Gerig, G., Styner, M., Jones, D., Weinberger, D., & Lieberman, J.
(2001). Shape analysis of brain ventricles using SPHARM. In Pro-
ceedings of MMBIA 2001 (pp. 171–178).

Gorczowski, K., Styner, M., Jeong, J.-Y., Marron, J. S., Piven, J.,
Hazlett, H. C., Pizer, S. M., & Gerig, G. (2007). Statistical shape
analysis of multi-object complexes. IEEE computer society con-
ference on computer vision and pattern recognition, CVPR ’07
(pp. 1–8). Minneapolis.

Gu, X., Wang, Y., Chan, T. F., Thompson, P. M., & Yau, S.-T. (2004).
Genus zero surface conformal mapping and its application to brain
surface mapping. IEEE Transactions on Medical Imaging, 23, 949–
958.

Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., et al. (2010). Voxel-
based assessment of gray and white matter volumes in Alzheimer’s
disease. Neuroscience Letters, 468, 146–150.

Hamilton, R. S. (1988). The Ricci flow on surfaces. Mathematics and
General Relativity, 71, 237–262.

Henrici, P. (1988). Applied and computational complex analysis (Vol.
3). New York: Wiley-Intersecience.

Hua, X., Lee, S., Hibar, D. P., Yanovsky, I., Leow, A. D., Toga, A. W.,
et al. (2010). Mapping Alzheimer’s disease progression in 1309 MRI
scans: Power estimates for different inter-scan intervals. Neuroim-
age,51, 63–75.

Hurdal, M. K., & Stephenson, K. (2004). Cortical cartography using
the discrete conformal approach of circle packings. NeuroImage,
23, S119–S128.

Jack, C. R. J., Bernstein, M. A., Fox, N. C., Thompson, P. M., Alexander,
P. M., Harvey, D., et al. (2007). The Alzheimer’s disease neuroimag-
ing initiative (ADNI): MRI methods. Journal of Magnetic Resonance
Imaging, 27, 685–691.

Jack, C. R, Jr, Shiung, M. M., Gunter, J. L., O’Brien, P. C., Weigand,
S. D., Knopman, D. S., et al. (2004). Comparison of different MRI
brain atrophy rate measures with clinical disease progression in AD.
Neurology, 62, 591–600.

123



170 Int J Comput Vis (2013) 105:155–170

Jin, M., Kim, J., Luo, F., & Gu, X. (September 2008). Discrete sur-
face Ricci flow. IEEE Transactions on Visualization and Computer
Graphics, 14, 1030–1043.

Lai, R., Shi, Y., Scheibel, K., Fears, S., Woods, R., Toga, A., & Chan,
T. (2010). Metric-induced optimal embedding for intrinsic 3D shape
analysis. In 2010 IEEE conference on computer vision and pattern
recognition (CVPR) (pp. 2871–2878). San Francisco.

Liu, X., Shi, Y., Dinov, I., & Mio, W. (2010). A computational model of
multidimensional shape. International Journal of Computer Vision,
89, 69–83.

Lui, L. M., Zeng, W., Yau, S.-T. & Gu, X. (2010). Shape analysis of
planar objects with arbitrary topologies using conformal geometry.
In 11th European conference on computer vision (ECCV 2010). Her-
aklion.

Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack,
C., Jagust, W., et al. (2005). The Alzheimer’s disease neuroimag-
ing initiative. Neuroimaging Clinics of North America, 15, 869–
877.

Pizer, S., Fritsch, D., Yushkevich, P., Johnson, V., & Chaney, E. (1999).
Segmentation, registration, and measurement of shape variation via
image object shape. IEEE Transactions on Medical Imaging, 18,
851–865.

Qiu, A., & Miller, M. I. (2008). Multi-structure network shape
analysis via normal surface momentum maps. NeuroImage, 42,
1430–1438.

Schoen, R., & Yau, S.-T. (1994). Lectures on differential geometry.
Boston: International Press of Boston.

Schwartz, E. L., Shaw, A., & Wolfson, E. (1989). A numerical solution
to the generalized Mapmaker’s problem: Flattening nonconvex poly-
hedral surfaces. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 11, 1005–1008.

Seppala, M., & T.S. (1992). Geometry of Riemann surfaces and Teich-
müller spaces. North-Holland mathematics studies. Amsterdam:
North-Holland.

Sharon, E., & Mumford, D. (October 2006). 2D-shape analysis using
conformal mapping. International Journal of Computer Vision, 70,
55–75.

Shen, L., Saykin, A. J., Chung, M. K., & Huang, H. (2007). Morpho-
metric analysis of hippocampal shape in mild cognitive impairment:
An imaging genetics study. In IEEE 7th international conference
bioinformatics and bioengineering. Boston.

Shi, Y., Lai, R., & Toga, A. (2011). Corporate: cortical reconstruction
by pruning outliers with Reeb analysis and topology-preserving evo-
lution. Information Process Medical Imaging, 22, 233–244.

Thompson, P. M. (1996). A surface-based technique for warping 3-
dimensional images of the brain. IEEE Transactions on Medical
Imaging, 15, 1–16.

Thompson, P. M., Hayashi, K. M., Zubicaray, G. D., Janke, A. L., Rose,
S. E., Semple, J., et al. (2003). Dynamics of gray matter loss in
Alzheimer’s disease. Journal of Neuroscience, 23, 994–1005.

Thurston, W. P. (1980). Geometry and topology of three-manifolds.
Princeton: Princeton university.

Timsari, B., & Leahy, R. M. (2000). Optimization method for creating
semi-isometric flat maps of the cerebral cortex. In SPIE symposium
on medical imaging 2000: image processing (Vol. 3979, pp. 698–
708). San Diego.

Tosun, D., Reiss, A., Lee, A. D., Dutton, R. A., Hayashi, K. M., Bellugi,
U., et al. (2006). Use of 3-D cortical morphometry for mapping
increased cortical gyrification and complexity in Williams syndrome.
In 3rd IEEE international symposium on biomedical imaging: From
nano to macro 2006 (pp. 1172–1175). Arlington.

Trouve, A., & Younes, L. (2005). Metamorphoses through Lie group
action. Foundations of Computational Mathematics, 5, 173–198.

Wang, Y., Gu, X., Chan, T. F., & Thompson, P. M. (2009). Shape analysis
with conformal invariants for multiply connected domains and its
application to analyzing brain morphology. IEEE computer society
conference on computer vision and pattern recognition, CVPR ’09
(pp. 202–209). Miami.

Wang, Y., Gu, X., Chan, T. F., Thompson, P. M., & Yau, S.-T. (2006).
Brain surface conformal parameterization with algebraic functions.
Proceedings of medical image computing and computer-assisted
intervention Part II (pp. 946–954). Copenhagen.

Wang, Y., Gu, X., Chan, T. F., Thompson, P. M., & Yau, S.-T. (2008).
Conformal slit mapping and its applications to brain surface para-
meterization. In Proceedings of international conference on med-
ical image computing and computer-assisted intervention: Part I
(pp. 585–593). New York.

Wang, Y., Lui, L., Gu, X., Hayashi, K. M., Chan, T. F., Toga, A. W., et al.
(2007). Brain surface conformal parameterization using Riemann
surface structure. IEEE Transactions on Medical Imaging, 26, 853–
865.

Wang, Y., Shi, J. Yin, X., Gu, X., Chan, T. F., Yau, S.-T., Toga, A. W. &
Thompson, P. M. (2012). Brain surface conformal parameterization
with the Ricci flow. IEEE Transcations on Medical Imaging, 31,
251–264.

Wang, Y., Song, Y., Rajagopalan, P., An, K. L. T., Chou, Y., Gutman,
B., et al. (2011). Surface-based TBM boosts power to detect disease
effects on the brain: An N=804 ADNI study. Neuroimage, 56(4),
1993–2010.

Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox,
P. T., et al. (2010). Cortical thickness or grey matter volume? The
importance of selecting the phenotype for imaging genetics studies.
NeuroImage, 53(3), 1135–1146.

Zeng, W., Lui, L. M., Gu, X., & Yau, S.-T. (2008). Shape analysis by
conformal modules. International Journal of Methods and Applica-
tions of Analysis (MAA),15(4), 539–556.

Zeng, W., Samaras, D., & Gu, X. D. (2010). Ricci flow for 3D shape
analysis. The IEEE Transactions on Pattern Analysis and Machine
Intelligence,32(4), 662–677.

123


	Teichmüller Shape Descriptor and Its Application to Alzheimer's Disease Study
	Abstract 
	1 Introduction
	1.1 AD-Related Motivation
	1.2 Related Work
	1.3 Our Approach
	1.3.1 Geometric Intuition
	1.3.2 Contributions
	1.3.3 Pipeline
	1.3.4 Organization


	2 Theoretical Background
	2.1 Surface Uniformization Mapping
	2.2 Teichmüller Space
	2.3 Surface Ricci Flow
	2.4 Teichmüller Shape Descriptor

	3 Algorithm
	3.1 Circular Uniformization Mapping
	3.2 Computing Teichmüller Shape Descriptor

	4 Experimental Results
	4.1 Data Source
	4.2 Data Preprocessing
	4.3 Experimental Setting
	4.4 Numerical Analysis of Signatures among AD   and Healthy Control Subjects
	4.5 Classification among AD and Healthy Control Subjects
	4.5.1 Comparison with Two Simple Brain Measurements

	4.6 Discussion
	4.6.1 Stability to Geometric Noise
	4.6.2 Functional Area Selection
	4.6.3 Biological Meaning of Teichmüller Signature
	4.6.4 Comparison on AD Detection
	4.6.5 Future Exploration


	5 Conclusions and Future Work
	Acknowledgments
	6 Appendix: Proof of Theorem 4
	References


